AD A 097232 ### LEVEL I OFFICE OF NAVAL RESEARCH Contract/N00014-76-C-0408/ Project NR 092-555 Technical Report No. 12 THRESHOLD TEAR STRENGTH OF SOME MOLECULAR NETWORKS by A. N./Gent R. H./Tobias Institute of Polymer Science The University of Akron Akron, Ohio 44325 3 Apr 281 (222) SELECTE APR 0 2 1981 Reproduction in whole or in part is permitted for any purpose of the United States Government Approved for Public Release; Distribution Unlimited THE COL 491469 214 147 | SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered) | | | | |--|--|--|--| | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | | | | | 3. RECIPIENT'S CATALOG NUMBER | | | | Technical Report 12 AD-A097 | 232 | | | | 4. TITLE (and Subtitio) | S. TYPE OF REPORT & PERIOD COVERED | | | | Threshold Tear Strength of Some Molecular Networks | Technical Report | | | | INE CMO1 K2 | NO0014-76-C-0408 | | | | 7. AUTHOR(a) | 8. CONTRACT OR GRANT NUMBER(*) | | | | A. N. Gent and R. H. Tobias | NR 092-555 | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS Institute of Polymer Science | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | | The University of Akron
Akron, Ohio 44325 | | | | | 11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research | 12. REPORT DATE April 3, 1981 | | | | Power Program | 13. NUMBER OF PAGES | | | | Arlington. Virginia 22217 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of this report) | | | | | | | | | | Unclassified | | | | | 18a. DECLASSIFICATION/DOWNGRADING
SCHEDULE | | | | 14. DISTRIBUTION STATEMENT (of this Report) | | | | | Approved for public release; distribution unlimit | ed | | | | | | | | | 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fre | m Report) | | | | | | | | | | | | | | 18. SUPPLEMENTARY NOTES | | | | | Submitted for publication in: ACS Polymer Prepr | rints | | | | 19. KEY WORDS (Continue on reverse side if necessary and identify by block member) | | | | Crosslinking, Endlinking, Elastomers, Fracture, Polydimethylsiloxane, Tear Energy, Strength 29. APST RACT (Continue on reverse side if necessary and identify by block manber) The tear strength of polydimethylsiloxane (PDMS) networks was found to be only about one-third as large as that of polybutadiene (PB) or polyisoprene (PI) networks of similar $M_{\rm c}$ when the tear strength was measured under threshold conditions, i.e., at high temperatures, low rates of tearing, and with swollen samples. This striking difference in strength is attributed to the smaller length and extensibility of PDMS molecules in comparison with PB or PI molecules of the same molecular weight. Networks formed by trifunctional or tetrafunctional endlinking reactions with difunctional PDMS polymers were found to be DD 1 JAN 72 1473 EDITION OF 1 NOV 68 IS OBSOLETE \$/N 0102- LF- 014- 4601 SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered) _ _ ### THRESHOLD TEAR STRENGTH OF SOME MOLECULAR NETWORKS bу ### A. N. Gent and R. H. Tobias ### Introduction When dissipative processes are minimized, the tear strength of elastomeric materials is found to reach a lower limit, termed here the threshold strength (1,2). Experimentally, the threshold strength is reached at high temperatures, at low rates of tearing and when the material is highly swollen with a low-viscosity liquid. Its magnitude has been predicted theoretically from the length of the molecular strands comprising the network and the dissociation energy of the chemical bonds comprising the strand (3). Expressed as the energy T_0 required to tear through a unit area of the material, the theoretical result takes the form $$T_{O} = KM_{C}^{\frac{1}{2}} \tag{1}$$ where M_C is the mean molecular weight of the network strands and K is a constant involving the mass, length and effective flexibility of a monomeric unit, the density of the polymer and the dissociation energy of the relevant bonds. For C-C molecular strands K is predicted to be about 0.3 $J/m^2/(molecular\ weight\ unit)^{\frac{1}{2}}$. Experimental values of T_0 for randomly-crosslinked networks of polybutadiene were found to be consistent with equation 1, when K was given a somewhat higher value, about 1.0 $J/m^2/(molecular\ weight\ unit)^{\frac{1}{2}}$. Thus, apart GRA&I T'B Gradian from this numerical discrepancy, the threshold strength of polybutadiene networks is reasonably well accounted for. We now address two further aspects of threshold strength. Does the tear strength of other elastomers, of different chemical type, conform to equation 1? And are randomly-crosslinked materials weaker than more regular networks, prepared, for example, by linking strands of uniform molecular weight into a network by endgroup coupling reactions? A higher tensile strength has been reported for endlinked networks of polyisoprene in comparison with randomly-crosslinked networks of similar average strand length (4). However, those measurements were not made under threshold conditions and did not examine a wide range of strand lengths, so that direct comparison with molecular theory is not possible. Measurements have now been carried out on endlinked and randomlylinked samples of polybutadiene, polydimethylsiloxane, and randomlylinked samples of cis-polyisoprene. The results are presented here. Experimental Details ### (i) Endlinked PDMS Linear polydimethylsiloxanes with vinyl endgroups were supplied by Dow Corning Corporation. Three different molecular weight ranges were employed. Membrane osmometry yielded values for $\bar{\rm M}_{\rm n}$ of 16,000 24,000, and 37,000 g/g-mole. Endgroup analysis using mercuric acetate (5) gave vinyl contents of 0.47 \pm 0.03, 0.24 \pm 0.02, and 0.15 \pm 0.02 per cent, corresponding to values for M_n of 11,500, 22,500 and 36,000 g/g-mole. GPC data gave $\bar{M}_{\rm W}/\bar{M}_{\rm n}$ ratios of approximately 2.0, as reported by Valles and Macosko (6,7) for their similar polymers. Trifunctional and tetrafunctional silane linking agents were supplied to us by Prof. Macosko. They consisted of trikis-dimethyl-siloxyphenylsilane and tetrakis-dimethylsiloxysilane and are denoted here A3 and A4, respectively. Gas chromatography, carried out by Prof. Macosko, revealed that they were approximately 95 and 89 per cent pure. Si-H group analysis (5) gave average functionalities of 3.15 and 3.50, somewhat different from the expected values of 3 and 4, indicating that other constituents are present. The linking agent, A3 or A4, was mixed in various concentrations with the divinyl-PDMS, together with 5 ppm of a Pt catalyst (8). The mixture was then degassed and cast as a thin sheet on a Teflon surface. Complete reaction was found to occur on heating for about 3 days at 70°C, as judged by equilibrium swelling measurements in benzene; thereafter, 4 days at 70°C was used to ensure complete reaction. As shown in Figure 1, values of M_{C} calculated from equilibrium swelling ratios in benzene (9), were found to depend strongly upon the concentration of endgroups in the linking agent relative to those in the polymer. The highest effective degree of crosslinking, i.e., the lowest degree of swelling and the lowest value for M_{C} , was obtained at a characteristic endgroup ratio lying between about 1.1 and 1.6 instead of the expected ratio of 1.0. Thus, even when allowance is made for the true functionality of the linking agent, it is still necessary to employ a greater amount than expected to produce a minimum value for $\rm M_{\rm C}$. Presumably, a significant fraction of polymer endgroups do not become linked into the network until an excess of linking agent is present. This implies that the junction points are not exclusively trifunctional or tetrafunctional in nature. Networks were prepared in all cases using the amount of endlinking agent necessary to give a minimum M_c . Values of M_c were calculated from the Mooney-Rivlin elasticity coefficient C_1 , determined from tensile stress-strain measurements (10). $$M_{c} = \rho RT/2C_{1}, \qquad (2)$$ where ρ is the density, 0.97 g/ml, R is the gas constant and T is absolute temperature, for comparison with earlier work (2). ### (ii) Randomly - crosslinked PDMS The polydimethylsiloxane (PDMS) used to make random networks was obtained from General Electric. Membrane osmometry showed \overline{M}_n to be 430,000 g/g-mole. The polymer was mixed with various amounts of a free-radical crosslinking agent, dicumylperoxide (Di-Cup R, Hercules Chemical Co.). Samples were then pressed into sheets and crosslinking was effected by heating for 2 h at 150°C in a heated press. \overline{M}_C values were calculated using equation 2. ### (iii)Endlinked PB Endlinked polybutadiene samples were provided by Prof. F. N. Kelley and Mr. Long-Ji Su of these laboratories. They were made by reacting toluene -2,4- diisocyanate with the vinyl endgroups of vinyl-terminated polybutadiene (Arco R45-HT) and then employing trimethylol-propane as a trifunctional linking agent. The prepolymer was also chain-extended with 1,4 - butanediol to give a higher $\rm M_{C}$ value on subsequent endlinking. $\rm M_{C}$ values, calculated by means of equation 2, were 3,100 g/g-mole for the sample made with the initial polymer and 7,100 g/g-mole when the chain-extended material was used. ### (iv) Randomly - crosslinked PB and PI Polybutadiene (Diene 35 NFA, Firestone Tire and Rubber Co.) and cis-polyisoprene (Natsyn 2200, Goodyear Tire and Rubber Co.) were crosslinked with dicymylperoxide, as for PDMS. $M_{\rm C}$ values were also calculated by means of equation 2. ### (v) Measurements of threshold tear strength Rectangular strips, about 60 mm long, 10 mm wide and 1.4 mm thick were scored along a central line to a depth of about 0.7 mm, leaving about one-half of the original thickness to be torn through. The tear energy T was calculated from the measured tear force F, $$T = 2 F/t, \tag{3}$$ where t is the width of the tear path (Figure 2). Tearing was found to take place at an angle of approximately 45° to the sheet thickness (11). Measurements were carried out on both swollen and unswollen samples, using m-xylene or silicone oil as swelling liquids with PDMS networks and m-xylene or paraffin oil with PB and PI networks. Samples were torn at temperatures between 70°C and 140°C. Values of the tear energy T for swollen samples were multiplied by $\lambda_{\rm S}^{\ 2}$, where $\lambda_{\rm S}$ is the linear swelling ratio, to take into account the reduced number of network strands crossing the tear path (1-3). Close agreement was obtained with unswollen samples at the high temperatures and low rates of tearing (about $4\mu\text{m/s}$) used in the present experiments. The mean values have therefore been taken as measures of the threshold tear strength $T_{\rm O}$. ### **Experimental Results and Discussion** Experimentally-determined values of T_o for PDMS networks are plotted in Figure 3 against values of M_c calculated from the elastic coefficient C_1 by means of equation 2. T_o was found to be accurately proportional to $M_c^{\frac{1}{2}}$, in accordance with equation (1), with the coefficient of proportionality K being about 0.30, 0.25, and 0.23 $J/m^2/c$ (molecular weight unit) for the A4, A3, and randomly-linked materials, respectively. These differences are small, barely significant, but in the expected direction. Values of T_o are also shown in Figure 3 for the other materials examined. Again, a proportionality to $M_c^{\frac{1}{2}}$ was found, in accordance with theory. Moreover, the present values for endlinked PB and randomly-linked PI are in good agreement with previously-reported data on randomly-linked PB, with $K = 0.85 \ J/m^2$. This is much larger than for the PDMS materials, however. Thus, at the same value of M_c , elastomeric networks based on C-C molecular chains have a threshold strength about three times that of Si-O networks. Although the bond dissociation energies for C-C and Si-O bonds are quite similar, 89 and 80 kcal/g-mole respectively, the molecular weight per main-chain atom is considerably higher for PDMS (37 molecular weight units) than for PI (17) and PB (13.5). The extended length of a network strand is therefore much smaller for PDMS at the same value of $M_{\rm C}$. There are also steric restrictions on straightening the Si-O chain due to unequal main-chain bond angles. Thus, the threshold strength of PDMS networks would be expected to be less than one-half as large as for C-C networks, in accordance with observation. ### Conclusions The threshold tear strength of elastomeric molecular networks does not appear to depend strongly, if at all, upon the uniformity of network strand lengths. It is found to be proportional to $M_C^{\frac{1}{2}}$ where M_C is the mean molecular weight of the strands, in accordance with the theory of Lake and Thomas (3). However, it is considerably smaller for Si-O networks than for C-C networks at equal M_C values. This is attributed to differences in strand length and extensibility. ### <u>Acknowledgements</u> This work was supported by research grants from the Office of Naval Research (Contract ONR NO0014-76-C-0408) and Lord Kinematics Division of Lord Corporation. Professor F. N. Kelley and Mr. L.-J. Su of these laboratories supplied the samples of endlinked polybutadiene. The authors are also indebted to Prof. C. W. Macosko of the University of Minnesota for supplying the endlinking reagents, A3 and A4, and helpful advice on their use, and to Dow Corning Corp. for samples of polydimethylsiloxane polymers having reactive endgroups. ### References - 1. H. K. Mueller and W. G. Knauss, Trans. Soc. Rheol., 15, 217 (1971). - 2. A. Ahagon and A. N. Gent, J. Polym. Sci: Polym. Phys. Ed., <u>13</u>, 1903 (1975). - 3. G. J. Lake and A. G. Thomas, Proc. Royal Soc. (London), <u>A300</u>, 108 (1967). - 4. M. Morton and D. C. Rubio, Plastics and Rubber: Mat. Appl. $\underline{3}$, 139 (1978). - 5. R. C. Smith, N. C. Angelotti, and C. L. Hanson, "Analysis of Silicones", A. L. Smith, ed., John Wiley & Sons, New York, 1974, p.150. - 6. E. M. Valles and C. W. Macosko, Rubber Chem. Technol., 49, 1232 (1976). - 7. E. M. Valles and C. W. Macosko, Macromolecules, 13, 521 (1979). - 8. C. B. Kauffman and D. O. Cowan in "Inorganic Synthesis", Vol. 6, E. G. Rochow, ed., McGraw-Hill, New York, 1969, p.214. - 9. H. Shih and P. J. Flory, Macromolecules, <u>5</u>, 759 (1972). - 10. L. R. G. Treloar, "Physics of Rubber Elasticity", 2nd Ed., Clarendon Press, Oxford, 1958. - A. Ahagon, A. N. Gent, H. J. Kim and Y. Kumagai, Rubber Chem. Technol., 48, 896 (1975). ### Figure Legends - Figure 1. M_C from equilibrium swelling in benzene <u>vs</u> concentration of A4 endlinking agent in divinyl-PDMS, M_n = 11,500. - Figure 2. (a) Tear test (b) Sketch of torn cross-section. - Figure 3. Threshold tear energy T_0 for PDMS networks $(0,\Delta,\square)$, PB networks (\bullet,\blacktriangle) , and PI networks (\bullet) , \underline{vs} molecular weight M_C between crosslinks calculated from C_1 . Random crosslinking: 0, \bullet , \bullet ; trifunctional endlinking: Δ , \blacktriangle ; tetrafunctional endlinking: \square . Figure 2. Figure 3. ### ENERGETIC MATERIALS RESEARCH ### DISTRIBUTION LIST | | No. Copies | | No. Copies | |--|------------|--|------------| | Assistant Secretary of the Navy (R, E, and S) Attn: Dr. R.E. Reichenbach | 1 | AFATL
Eglin AFB, FL 32542
Attn: Dr. Otto K. Heiney | 7 | | Room 5E787
Pentagon
Washington, DC 20350 | | AFRPL
Code PACC
Edwards AFB, CA 93523 | 1 | | Office of Naval Research
Code 473 | 10 | Attn: Mr. W. C. Andrepont | | | Arlington, VA 22217
Attn: Dr. R. Miller | | AFRPL
Code CA
Edwards AFB, CA 93523 | 1 | | Office of Naval Research
Code 200B | 1 | Attn: Dr. R. R. Weiss | | | Arlington, VA 22217
Attn: Dr. J. Enig | | Code AFRPL MKPA
Edwards AFB, CA 93523
Attn: Mr. R. Geisler | 1 | | Office of Naval Research
Code 260
Arlingon, VA 22217 | 1 | Code AFRPL MKPA Edwards AFB, CA 93523 | 1 | | Attn: Mr. D. Siegel Office of Naval Research | 1 | Attn: Dr. F. Roberto AFSC | 1 | | Western Office
1030 East Green Street
Pasadena, CA 91106
Attn: Dr. T. Hall | • | Andrews AFB, Code DLFP
Washington, DC 20334
Attn: Mr. Richard Smith | ' | | Office of Naval Research Eastern Central Regional Office 495 Summer Street Boston, MA 02210 | 2 | Air Force Office of Scientific Research Directorate of Chemical & Atmospheric Sciences Bolling Air Force Base Washington, DC 20332 | 1 | | Attn: Dr. L. Peebles
Dr. A. Wood | | Air Force Office of Scientific Research | 1 | | Office of Naval Research
San Francisco Area Office
One Hallidie Plaza Suite 601
San Francisco, CA 94102
Attn: Dr. P. A. Miller | 1 | Directorate of Aero-
space Sciences
Bolling Air Force Base
Washington, DC 20332
Attn: Dr. L. H. Caveny | | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | 12 | Anal-Syn Lab Inc.
P.O. Box 547
Paoli, PA 19301
Attn: Dr. V. J. Keenan | 1 | | | No. Copies | | No. Copies | |---|------------|--|------------| | Army Ballistic Research Labs
Code DRDAR-BLP
Aberdeen Proving Ground, MD
21005
Attn: Mr. L. A. Watermeier | 1 | Hercules Inc. Eglin
AFATL/DLDL
Eglin AFB, FL 32542
Attn: Or. Ronald L. Simmons | 1 | | Army Ballistic Research Labs
ARRADCOM
Code DRDAR-BLP
Aberdeen Proving Ground, MD
21005 | 1 | Hercules Inc. Magna
Bacchus Works
P.O. Box 98
Magna, UT 84044
Attn: Mr. E. H. DeButts | 1 | | Army Ballistic Research Labs
ARRADCOM
Code DRDAR-BLT | 1 | Hercules Inc. Magna
Bacchus Works
P.O. Box 98
Magna, UT 84044
Attn: Dr. James H. Thacher | 1 | | Aberdeen Proving Ground, MD 21005 Attn: Dr. Philip Howe Army Missile Command | 2 | HQ US Army Material Development
Readiness Command
Code DRCDE-DW
5011 Eisenhower Avenue | . 1 | | Code DRSME-RK Redstone Arsenal, AL 35809 Attn: Dr. R. G. Rhoades Dr. W. W. Wharton | - | Room 8N42
Alexandria, VA 22333
Attn: Mr. S. R. Matos | | | Atlantic Research Corp. 5390 Cherokee Avenue Alexandria, VA 22314 Attn: Dr. C. B. Henderson | 1 | Johns Hopkins University APL Chemical Propulsion Information Agency Johns Hopkins Road Laurel, MD 20810 Attn: Mr Theodore M. Gilliland | | | Ballistic Missile Defense Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807 Attn: Dr. David C. Sayles | 1 | Lawrence Livermore Laboratory
University of California
Livermore, CA 94550
Attn: Dr. M. Finger | 1 | | Ballistic Research Laboratory
USA ARRADCOM
DRDAR-BLP
Aberdeen Proving Ground, MD | 1 | Lawrence Livermore Laboratory
University of California
Livermore, CA 94550
Attn: Dr. R. McGuire | 1 | | 21005
Attn: -Dr. A. W. Barrows | | Lockheed Missiles and Space Co. P.O. Box 504 Sunnyvale, CA 94088 | 1 | | Hercules Inc. Cumberland Aerospace Division Allegany Ballistics Lab P.O. Box 210 Cumberland, MD 21502 Attn: Dr. Rocco Musso | 2 | Attn: Dr. Jack Linsk
Org. 83-10 Bldg. 154 | | | | No. Copies | | No. Copies | |---|------------|---|------------| | Lockheed Missile & Space Co.
3251 Hanover Street
Palo Alto, CA 94304
Attn: Dr. H. P. Marshall | 1 | Naval Research Lab
Code 6100
Washington, DC 20375 | 1 | | Dept. 52-35 | | Naval Sea Systems Command
Washington, DC 20362 | 1 | | Los Alamos Scientific Lab
P.O. Box 1663
Los Alamos, NM 87545
Attn: Dr. R. Rogers, WX-2 | 1 | Attn: Mr. G. Edwards, Code 62R3
Mr. J. Murrin, Code 62R2
Mr. W. Blaine, Code 62R | | | Los Alamos Scientific Lab
P.O. Box 1663
Los Alamos, NM 87545
Attn: Dr. B. Craig, M Division | 1
n | Naval Sea Systems Command
Washington, DC 20362
Attn: Mr. R. Beauregard
SEA 64E | 1 | | Naval Air Systems Command
Code 330
Washington, DC 20360
Attn: Mr. R. Heitkotter
Mr. R. Brown | 1 | Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD
20910
Attn: Dr. H. G. Adolph | 1 | | Naval Air Systems Command
Code 310
Washington, DC 20360
Attn: Dr. H. Mueller
Dr. H. Rosenwasser | | Naval Surface Weapons Center
Code R13
White Oak, Silver Spring, MD
20910
Attn: Dr. R. Bernecker | 1 | | Naval Explosive Ordnance
Disposal Facility
Indian Head, MD 20640
Attn: Lionel Dickinson
Code D | 1 | Naval Surface Weapons Center
Code R10
White Oak, Silver Spring, MD
20910
Attn: Dr. S. J. Jacobs | 1 | | Naval Ordnance Station
Code 5034
Indian Head, MD 20640
Attn: Mr. S. Mitchell | 1 | Naval Surface Weapons Center
Code Rll
White Oak, Silver Spring, MD
20910
Attn: Dr. M. J. Kamlet | 1 | | Naval Ordnance Station
Code PM4
Indian Head, MD 20640
Attn: Mr. C. L. Adams | 1 | Naval Surface Weapons Center
Code RO4
White Oak, Silver Spring, MD
20910 | 1 | | Dean of Research
Naval Postgraduate School
Monterey, CA 93940
Attn: Dr. William Tolles | 1 | Attn: Dr. D. J. Pastine Naval Surface Weapons Center Code R13 | 1 | | Naval Research Lab
Code 6510
Washington, DC 20375
Attn: Dr. J. Schnur | 1 | White Oak, Silver Spring, MD
20910
Attn: Dr. E. Zimet | | | | No. Copies | | No. Copies | |--|------------|---|------------| | Naval Surface Weapons Center
Code R101 | 1 | Naval Weapons Center
Code 388 | 1 | | Indian Head, MD 20640
Attn: Mr. G. L. MacKenzie | | China Lake, CA 93555
Attn: D. R. Derr | | | neem. III. G. E. Heckenzie | | | _ | | Naval Surface Weapons Center
Code R17 | · 1 | Naval Weapons Center
Code 388 | 1 | | Indian Head, MD 20640 | | China Lake, CA 93555 | | | Attn: Or. H. Haiss | | Attn: Dr. R. Reed Jr. | | | Naval Surface Weapons Center | 1 | Naval Weapons Center | 1 | | Code R11
White Oak, Silver Spring, MD | | Code 385
China Lake, CA 93555 | | | 20910 | | Attn: Dr. A. Nielsen | | | Attn: Dr. K. F. Mueller | | Nevel Harrane Crahen | • | | Naval Surface Weapons Center | 1 | Naval Weapons Center
Code 3858 | 1 | | Code R16 | • | China Lake, CA 93555 | | | Indian Head, MD 20640
Attn: Dr. T. D. Austin | | Attn: Mr. E. Martin | | | | _ | Naval Weapons Center | 1 | | Naval Surface Weapons Center Code R122 | 1 | China Lake, CA 93555
Attn: Mr. R. McCarten | | | White Oak, Silver Spring, MD | | Accii. Mr. A. Accai teil | | | 20910 | | Naval Weapons Support Center | 1 | | Attn: Mr. L. Roslund | | Code 5042
Crane, Indiana 47522 | | | Naval Surface Weapons Center | 1 | Attn: Dr. B. Douda | | | Code R121 | | | _ | | White Oak, Silver Spring, MD 20910 | | Rohm and Haas Company
723-A Arcadia Circle | 1 | | Attn: Mr. M. Stosz | | Hunsville, Alabama 35801 | | | Maria 3 Maria a G. A | • | Attn: Dr. H. Shuey | | | Naval Weapons Center
Code 3853 | 1 | Strategic Systems Project Office | . 1 | | China Lake, CA 93555 | | Dept. of the Navy | • | | Attn: Dr. R. Atkins | | Room 901 | | | Naval Weapons Center | 1 | Washington, DC 20376
Attn: Dr. J. F. Kincaid | | | Code 3205 | • | noon. Dr. o. r. Kingara | | | China Lake, CA 93555 | | Strategic Systems Project Office | 2 | | Attn: Dr. L. Smith | | Dept. of the Navy
Room 1048 | | | Naval Weapons Center | 1 | Washington, DC 20376 | | | Code 3205 | | Attn: Mr. E. L. Throckmorton | | | China Lake, CA 93555
Attn: Dr. C. Thelen | | Mr. R. Kinert | | | Actii: Dr. C. Inelen | | Thiokol Chemical Corp. Brigham | 1 | | Naval Weapons Center | 1 | City | | | Code 385 | | Wasatch Division
Brigham City, UT 84302 | | | China Lake, CA 93555
Attn: Dr. A. Amster | | Attn: Dr. G. Thompson | | | | | • | | | <u> </u> | lo. Copies | No. | Copies | |--|------------|--|------------| | USA ARRADCOM
DRDAR-LCE
Dover, NJ 07801
Attn: Dr. R. F. Walker | 1 | Georgia Institute of Technology
Office of Research Administration
Atlanta, Georgia 30332
Attn: Professor Edward Price | 1 | | USA ARRADCOM
DRDAR-LCE
Dover, NJ 07801
Attn: Dr. N. Slagg | 1 | Univ. of Utah Dept. of Mech. & Industrial Engine MEB 3008 Salt Lake City, Utah 84112 Attn: Dr. Stephen Swanson | l
ering | | U.S. Army Research Office
Chemistry Division
P.O. Box 12211
Research Triangle Park, NC
27709 | 1 | Space Sciences, Inc.
135 Maple Avenue
Monrovia, CA 91016
Attn: Dr. M. Farber | 1 | | Institute of Polymer Science
University of Akron
Akron, OH 44325
Attn: Professor Alan N. Gent | 1 | Washington State University
Dept. of Physics
Pullman, WA 99163
Attn: Professor G.D. Duvall | 1 | | SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
Attn: Dr. Y.M. Gupta | 1 | Univ. of Maryland
Department of Mechanical Eng.
College Park, MD 20742
Attn: Professor R.W. Armstrong | 1 | | Graduate Aeronautical Lab.
California Institute of Technolo
Pasadena, CA 91125
Attn: Professor W.G. Knauss | 1
ogy | The Catholic University of America
Physics Department
520 Michigan Ave., N.E.
Washington, D.C. 20017
Attn: Professor T. Litovitz | 1 | | Pennsylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802
Attn: Professor Kenneth Kuo | 1 | Sandia Laboratories Division 2513 P.O. Box 5800 Albuquerque, N.M. 87185 Attn: Dr. S. Sheffield | 1 | | Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217
Attn: Dr. G. Neece Code 472 | 1 | IBM Research Lab.
K42.282
San Jose, CA 95193 | 1 | | Thiokol Corp. Huntsville Huntsville Div. Huntsville, AL 35807 | 1 | Attn: Dr. Thor L. Smith California Institute of Tech. Dept. of Chemical Engineering | 1 | | Attn: Mr. J.D. Byrd Washington State University Dept. of Physics | 1 | Pasadena, CA 91125
Attn: Professor N.W. Tschoegl | • | | Pullman, WA 99163
Attn: Prof. T. Dickinson | • | Northwestern University Dept. of Civil Engineering Evanston, IL 60201 Attn: Professor J.D. Achenbach | 1 | | University of California
Dept. of Chemistry
405 Hilgard Avenue
Los Angeles, CA 90024
Attn: Prof. M.F. Nicol | 1 | Office of Naval Research
Structural Mechanics Program
Arlington, VA 22217
Attn: Dr. N.L. Basdekas, Code 474 | 1 | | | | or a mile bedeened, book if i | | | UET. | No. Copies | |--|-------------| | University of California
Berkeley, CA 94720
Attn: Prof. A.G. Evans | 1 | | Texas A&M Univ. Dept. of Civil Engineering College Station, TX 77843 Attn: Professor Richard A. Sc | 1
hapery | | SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025
Attn: Mr. M. Hill | 1 | | Los Alamos Scientific Laborato
Los Alamos, NM 87545
Attn: Dr. J.M. Walsh | ry 1 | Downey, CA 90241 Attn: H. M. Clancy, Mail Stop AB 70 ONR Resident Representative Ohio State University Research Center 1314 Kinnear Road Columbus, Ohio 43212 Attn: Joseph Haggard, Department 1 Attn: Joseph Haggard, Department of the Navy Rockwell International 12214 Lakewood Blvd. ### END # DATE FILMED DTIC